Print

Umělá inteligence ve službách mechanika

-- 14.08.2017

Rozvoj nových technologií vždy jednou za čas přináší příležitost výrazně proměnit naši společnost. Stačí se podívat, jak změnil svět s příchodem internetu či chytrých telefonů. A k vynálezu elektřiny přirovnávají někteří pokrok v oblasti umělé inteligence. Předně je třeba říct, že neuronové sítě nejsou zcela novým vynálezem. Princip tzv. strojového učení je známý už 20 let, nicméně díky nárůstu výpočetního výkonu v současnosti zažívá renesanci. 

Čeká nás opravdu tak dramatická změna?

Během posledních několika málo let se počítače naučili hrát jednoduché hry pouze sledováním obrazovky a mačkáním kláves. V loňském roce porazili nejlepší lidské hráče planety ve hře GO, která se díky své složitosti a počtu kombinací měla být pro počítače nedobytná ještě nejméně celá desetiletí. A právě to je nejnázornější příklad, jak moc se přístup v řešení složitých problémů změnil.

Již to není o síle výpočetního výkonu jako byla hra šachy, ale zejména o kvalitě algoritmu. Ten využívá tzv. hlubokých neuronových sítí, které imitují proces učení v biologických organizmech. Učí se na základě dat a historických zkušeností podobně jako lidé.  

Vysvětleme si to na příkladu rozeznávání objektů v obrazu. Například jak se liší kůň od osla. Možná byste mohli zkusit vymyslet rovnici, jak je od sebe rozlišit s použitím poměrů velikostí uší, vzdálenosti očí aj. Nicméně pak vám někdo dá fotku z jiného úhlu a pracně připravené rovnice přestane fungovat. Naopak, když poskytnete neuronové síti stovky obrázků zvířat, naučí se sama je rozpoznávat. Je to jako když se učí malé dítě. Nejprve si koně s oslem plete, ale když je párkrát správně pojmenujete, naučí se je rozlišovat.

Toto pokročilé strojové učení, umělá inteligence, nachází své uplatnění v celé řadě oborů od rozpoznání překážek u samo-řiditelných aut až po úpravu fotografií ve stylu vybraného malíře. Mohla by však sloužit mechanikovi a snížit náklady na údržbu? 

Jeden z oborů, kde se použití neuronových sítí nabízí je prostředí audio diagnostiky

Vibrace a zvuk jsou často nejjednodušší metoda rozpoznání mechanických závad ať u motorů, převodů, výhybek či jiných mechanizmů. Akustická emise byla však do nedávna příliš složitá, než aby bylo možné ji přímo zpracovávat. Signál byl příliš chaotický. Proto se v praxi uplatňovala pouze v jednoduché formě. Například v případě ložisek se hledali tzv. vyšší harmonické frekvence. Výrazná amplituda na násobku otáček ložiska indikovala potenciální problém.

Většina z nás ovšem zažila situaci, kdy jste například jeli automobilem a měli pocit, že něco nezní úplně v pořádku. A někdo asi zažil i situaci, kdy mechanik po zaparkování vozu v servise přišel k vám a rovnou vám oznámil v čem je problém. A to je možné díky naší lidské schopnosti porozumět zvukům velmi komplexně. Zkuste pustit klíč na zem a uvidíte, jak se lidé otočí – všichni tento zvuk rozpoznali.

A tuto schopnost rozpoznávání zvuku je nyní možné replikovat v počítači. Diagnostika tedy může nabýt mnohem komplexnější podoby. Již nebude omezena jednoduchými rovnicemi. Neuronové sítě mají schopnost odlišovat od sebe složité vzory například rozborem spektrogramu. Může se zaměřovat na krátké události dlouhé jen desítky či stovky milisekund. Dokáže ovšem stejně dobře zpracovávat i zvuky dlouhé mnoho vteřin. Neuronová síť rozumím zda to co předcházelo konkrétnímu zvuku odpovídá tomu, co má po něm následovat. Technologie akustických senzorů zároveň není omezena frekvenčním pásmem lidského ucha. Citlivý mikrofon či piezo-senzor dokáže zaznamenat pomalé chvění až po vysoký ultrazvuk.  Zvuk reprezentuje to, co se fyzicky odehrává uvnitř stroje a reflektuje mechanizmus zařízení. Lze tedy obohatit různé stroje o schopnost porozumět svým mechanickým závadám. 

Jaké možnosti využití se nabízí?

Naše zkušenost zahrnuje zpracování audio záznamů z rozličných mechanických zařízení – od eskalátorů, přes výhybky, klimatizační jednotky až po atypické zvuky z věterných elektráren. Jelikož se technologie učí z dat, tak je její využití univerzální. V ideálním případě je trénovací data-set obsáhlý, a to včetně řady problémových stavů. Pak je možné připravit algoritmus, který bude rozpoznávat konkrétní problémy. Pustíte mu několik vteřin záznamu. Výsledek analýzy je pak znám téměř okamžitě – vyhodnocení, jak moc je která třída poruchy rozpoznána.

Nabízí se technologie využít pro vývoj složitějších prediktivních modelů – například pro akustické stopy ložisek. Z jemných odstínů zvuku ložiska může neuronová síť odhadnout životnost ložiska či dalších mechanických komponent. To by radikálně změnilo, jakým stylem se v současnosti spravují stroje. Každý stroj by mohl mít individuální algoritmus, který jej bude sledovat v reálném čase a hlásí do centrálního systému, s jakou pravděpodobností a kdy dojde k výpadku. Místo pravidelných prohlídek by bylo možné přejít na systém průběžné kontroly dle potřeby nebo naopak minimalizovat počet neplánovaných výpadků.

S dalším rozvojem algoritmů a rozrůstajícím se množstvím dat lze pak očekávat i zpřesňování kvality analýzy. Využití u dalších strojních zařízeních se nabízí – ať se jedná o zdviže, motory zaoceánských lodí, kogenerační jednotky či třeba potrubní ventily. Řada dnešních řešení na prediktivní údržbu by mohla být rozšířena o informace získané prostřednictvím audio diagnostiky. Zvýší se tím přesnost a spolehlivost celého řešení. 

Svět IoT a edge computing

Rozvoji též nahrává fakt, že pro analýzu zvuku stačí malé snímací zařízení s mikropočítačem. Data tak není třeba posílat k analýze do cloudu. Výsledným algoritmem po dokončení učení je jen malá knihovna, která může pracovat na relativně levném hardwaru a odhalovat mechanické závady. Dochází tak k efektivnímu propojení výpočtů v cloudu a koncových (edge) zařízení. Nově vzniklý odborný název toto označuje slovem fog-computing. Analytické studie předpovídají vznik miliard zařízení tohoto typu v následujících letech, které si budou moci předávat informace a znalosti.  

Je zřejmé, že trend miniaturizace a zvyšování výpočetního výkonu bude i nadále pokračovat. Svět internetu věcí rozšíří diagnostické možnosti strojů. Mechanik tak již nebude odkázán na své smysly, tak jako byl v předchozích stoletích. Odpadnou také jednorázové a drahé kontroly specializovanými firmami.

Současné systémy monitoringu budou v nejbližší době zdokonaleny a jednotlivé stroje vylepšeny o senzory vybavené prvky umělé inteligence odhalující poruchy novým a komplexním způsobem. Stroje se zatím ještě sami neopraví, ale rozhodně budou sami sobě rozumět mnohem lépe. A to napomůže jak snížení nákladů na provoz a údržbu, tak se vyvarovat neplánovaným odstávkám. 

O autorovi:

Pavel Konečný vystudoval obor biomedicínské inženýrství na ČVUT. Dvanáct let pracoval pro globální mezinárodní IT společnost a z toho poslední 4 roky v australské Sydney, kde se podílel na řadě inovativních projektů. Po návratu do ČR s kolegou Pavlem Klingerem před rokem a půl založil společnost Neuron soundware (www.neuronsw.com), jež se zabývá rozpoznáním strojních závad s použitím zvuku. To je možné díky pokročilým metodám strojového učení - hlubokým neuronovým sítím jež imitují fungování lidského mozku. Mezi jejich první zákazníky se řadí společnosti jako je Siemens či Deutche Bahn. 

Autor: Pavel Konečný, Neuron soundware


Sponzorované odkazy

 
Aktuální vydání
Reklama

Navštivte rovněž

  •   Události  
  •   Katalog  

Události

Moderní technologie pro farmaceutický průmysl IV
2017-09-21 - 2017-09-21
Místo: Kongresové centrum Praha
MSV 2017 - Mezinárodní strojírenský veletrh
2017-10-09 - 2017-10-13
Místo: Výstaviště Brno
MSV Tour
2017-10-09 - 2017-10-13
Místo: Výstaviště, Brno
DeburringEXPO
2017-10-10 - 2017-10-12
Místo: Exhibition Centre Karlsruhe, Rheinstetten, Germany

Katalog

Brady s.r.o
Brady s.r.o
Na Pantoch 18
831 06 Bratislava
tel. +421 2 3300 4862

ABB s.r.o.
ABB s.r.o.
Štětkova 1638/18
14000 Praha 4
tel. +420739552216

Schneider Electric CZ, s. r. o.
Schneider Electric CZ, s. r. o.
U Trezorky 921/2
158 00 Praha 5
tel. 00420737266673

Panasonic Electric Works Europe AG
Panasonic Electric Works Europe AG
Veveří 3163/111
616 00 Brno
tel. +420 541 217 001

všechny firmy
Reklama



Tematické newslettery






Anketa


Na horách/u moře
Na chalupě/chatě v tuzemsku
Co je to dovolená?

O nás   |   Reklama   |   Mapa stránek   |   Kontakt   |   Užitečné odkazy   |   Bezplatné zasílání   |   RSS   |   Partneři   |   Blogy   |   
Copyright © 2007-2017 Trade Media International s. r. o.
Navštivte naše další stránky
Trade Media International s. r. o. Trade Media International s. r. o. - Remote Marketing Továrna - vše o průmyslu Control Engineering Česko Řízení a údržba průmyslového podniku Inteligentní budovy Almanach produkce – katalog firem a produktů pro průmysl Konference TMI